Differentiability in Fréchet spaces and delay differential equations

In infinite-dimensional spaces there are non-equivalent notions of continuous differentiability which can be used to derive the familiar results of calculus up to the Implicit Function Theorem and beyond. For autonomous differential equations with variable delay, not necessarily bounded, the search...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Walther Hans-Otto
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - késleltetett
doi:10.14232/ejqtde.2019.1.13

Online Access:http://acta.bibl.u-szeged.hu/58104
LEADER 01674nas a2200205 i 4500
001 acta58104
005 20210916104235.0
008 190531s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.13  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Walther Hans-Otto 
245 1 0 |a Differentiability in Fréchet spaces and delay differential equations  |h [elektronikus dokumentum] /  |c  Walther Hans-Otto 
260 |c 2019 
300 |a 1-44 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In infinite-dimensional spaces there are non-equivalent notions of continuous differentiability which can be used to derive the familiar results of calculus up to the Implicit Function Theorem and beyond. For autonomous differential equations with variable delay, not necessarily bounded, the search for a state space in which solutions are unique and differentiable with respect to initial data leads to smoothness hypotheses on the vector functional f in an equation of the general form x 0 (t) = f(xt) ∈ R n , with xt(s) = x(t + s) for s ≤ 0, which have implications (a) on the nature of the delay (which is hidden in f) and (b) on the type of continuous differentiability which is present. We find the appropriate strong kind of continuous differentiability and show that there is a continuous semiflow of continuously differentiable solution operators on a Fréchet manifold, with local invariant manifolds at equilibria. 
695 |a Differenciálegyenlet - késleltetett 
856 4 0 |u http://acta.bibl.u-szeged.hu/58104/1/ejqtde_2019_013.pdf  |z Dokumentum-elérés