A state-dependent delay equation with chaotic solutions
We exhibit a scalar-valued state-dependent delay differential equation x 0 (t) = f(x(t − d(xt))) that has a chaotic solution. This equation has continuous (semi-strictly) monotonic negative feedback, and the quantity t − d(xt) is strictly increasing along solutions.
Elmentve itt :
Szerzők: |
Kennedy Benjamin B. Mao Yiran Wendt Erik L. |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - késleltetett |
doi: | 10.14232/ejqtde.2019.1.22 |
Online Access: | http://acta.bibl.u-szeged.hu/58095 |
Hasonló tételek
-
Corrigendum to "A state-dependent delay equation with chaotic solutions" - Electron. J. Qual. Theory Differ. Equ. 2019, No. 22, 1-20
Szerző: Kennedy Benjamin B., et al.
Megjelent: (2019) -
Symmetric periodic solutions for a class of differential delay equations with distributed delay
Szerző: Kennedy Benjamin B.
Megjelent: (2014) -
Stability and instability for periodic solutions of delay equations with "steplike" feedback
Szerző: Kennedy Benjamin B.
Megjelent: (2012) -
Mild solutions for perturbed evolution equations with infinite state-dependent delay
Szerző: Aoued Djillali, et al.
Megjelent: (2013) -
On differential equations with state-dependent delay the principles of linearized stability and instability revisited /
Szerző: Stumpf Eugen
Megjelent: (2016)