A state-dependent delay equation with chaotic solutions
We exhibit a scalar-valued state-dependent delay differential equation x 0 (t) = f(x(t − d(xt))) that has a chaotic solution. This equation has continuous (semi-strictly) monotonic negative feedback, and the quantity t − d(xt) is strictly increasing along solutions.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2019
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet - késleltetett |
doi: | 10.14232/ejqtde.2019.1.22 |
Online Access: | http://acta.bibl.u-szeged.hu/58095 |
LEADER | 01070nas a2200229 i 4500 | ||
---|---|---|---|
001 | acta58095 | ||
005 | 20210916104221.0 | ||
008 | 190531s2019 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2019.1.22 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Kennedy Benjamin B. | |
245 | 1 | 2 | |a A state-dependent delay equation with chaotic solutions |h [elektronikus dokumentum] / |c Kennedy Benjamin B. |
260 | |c 2019 | ||
300 | |a 1-20 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We exhibit a scalar-valued state-dependent delay differential equation x 0 (t) = f(x(t − d(xt))) that has a chaotic solution. This equation has continuous (semi-strictly) monotonic negative feedback, and the quantity t − d(xt) is strictly increasing along solutions. | |
695 | |a Differenciálegyenlet - késleltetett | ||
700 | 0 | 1 | |a Mao Yiran |e aut |
700 | 0 | 1 | |a Wendt Erik L. |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/58095/1/ejqtde_2019_022.pdf |z Dokumentum-elérés |