A state-dependent delay equation with chaotic solutions

We exhibit a scalar-valued state-dependent delay differential equation x 0 (t) = f(x(t − d(xt))) that has a chaotic solution. This equation has continuous (semi-strictly) monotonic negative feedback, and the quantity t − d(xt) is strictly increasing along solutions.

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kennedy Benjamin B.
Mao Yiran
Wendt Erik L.
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet - késleltetett
doi:10.14232/ejqtde.2019.1.22

Online Access:http://acta.bibl.u-szeged.hu/58095
LEADER 01070nas a2200229 i 4500
001 acta58095
005 20210916104221.0
008 190531s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.22  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Kennedy Benjamin B. 
245 1 2 |a A state-dependent delay equation with chaotic solutions  |h [elektronikus dokumentum] /  |c  Kennedy Benjamin B. 
260 |c 2019 
300 |a 1-20 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We exhibit a scalar-valued state-dependent delay differential equation x 0 (t) = f(x(t − d(xt))) that has a chaotic solution. This equation has continuous (semi-strictly) monotonic negative feedback, and the quantity t − d(xt) is strictly increasing along solutions. 
695 |a Differenciálegyenlet - késleltetett 
700 0 1 |a Mao Yiran  |e aut 
700 0 1 |a Wendt Erik L.  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/58095/1/ejqtde_2019_022.pdf  |z Dokumentum-elérés