Algebraic orthogonality and commuting projections in operator algebras

We provide an order-theoretic characterization of algebraic orthogonality among positive elements of a general C∗ -algebra by proving a statement conjectured in [12]. Generalizing this idea, we describe absolutely ordered pnormed spaces for 1 ≤ p ≤ ∞ which present a model for “non-commutative vector...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Karn Anil Kumar
Dokumentumtípus: Cikk
Megjelent: 2018
Sorozat:Acta scientiarum mathematicarum 84 No. 1-2
Kulcsszavak:Algebra
Online Access:http://acta.bibl.u-szeged.hu/55817
LEADER 01740nab a2200193 i 4500
001 acta55817
005 20210325154355.0
008 181110s2018 hu o 0|| zxx d
022 |a 0001-6969 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Karn Anil Kumar 
245 1 0 |a Algebraic orthogonality and commuting projections in operator algebras  |h [elektronikus dokumentum] /  |c  Karn Anil Kumar 
260 |c 2018 
300 |a 323-353 
490 0 |a Acta scientiarum mathematicarum  |v 84 No. 1-2 
520 3 |a We provide an order-theoretic characterization of algebraic orthogonality among positive elements of a general C∗ -algebra by proving a statement conjectured in [12]. Generalizing this idea, we describe absolutely ordered pnormed spaces for 1 ≤ p ≤ ∞ which present a model for “non-commutative vector lattices”. This notion includes order-theoretic orthogonality. We generalize algebraic orthogonality by introducing the notion of absolute compatibility among positive elements in absolute order unit spaces and relate it to the symmetrized product in the case of a C∗ -algebra. In the latter case, whenever one of the elements is a projection, the elements are absolutely compatible if and only if they commute. We develop an order-theoretic prototype of the results. For this purpose, we introduce the notion of order projections and extend the results related to projections in a unital C∗ -algebra to order projections in an absolute order unit space. As an application, we describe the spectral decomposition theory for elements of an absolute order unit space. 
695 |a Algebra 
856 4 0 |u http://acta.bibl.u-szeged.hu/55817/1/math_084_numb_001-002_323-353.pdf  |z Dokumentum-elérés