Solutions of a quadratic Volterra-Stieltjes integral equation in the class of functions converging at infinity

The paper deals with the study of the existence of solutions of a quadratic integral equation of Volterra–Stieltjes type. We are looking for solutions in the class of real functions continuous and bounded on the real half-axis R+ and converging to proper limits at infinity. The quadratic integral eq...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Banaś Józef
Dubiel Agnieszka
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Integrálegyenlet
Online Access:http://acta.bibl.u-szeged.hu/55750
LEADER 01512nas a2200205 i 4500
001 acta55750
005 20210916104242.0
008 181107s2018 hu o 0|| zxx d
022 |a 1417-3875 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Banaś Józef 
245 1 0 |a Solutions of a quadratic Volterra-Stieltjes integral equation in the class of functions converging at infinity  |h [elektronikus dokumentum] /  |c  Banaś Józef 
260 |c 2018 
300 |a 1-17 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a The paper deals with the study of the existence of solutions of a quadratic integral equation of Volterra–Stieltjes type. We are looking for solutions in the class of real functions continuous and bounded on the real half-axis R+ and converging to proper limits at infinity. The quadratic integral equations considered in the paper contain, as special cases, a lot of nonlinear integral equations such as Volterra–Chandrasekhar or Volterra–Wiener–Hopf equations, for example. In our investigations we use the technique associated with measures of noncompactness and the Darbo fixed point theorem. Particularly, we utilize a measure of noncompactness related to the class of functions in which solutions of the integral equation in question are looking for. 
695 |a Integrálegyenlet 
700 0 1 |a Dubiel Agnieszka  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/55750/1/ejqtde_2018_080.pdf  |z Dokumentum-elérés