Perturbed Li-Yorke homoclinic chaos

It is rigorously proved that a Li–Yorke chaotic perturbation of a system with a homoclinic orbit creates chaos along each periodic trajectory. The structure of the chaos is investigated, and the existence of infinitely many almost periodic orbits out of the scrambled sets is revealed. Ott–Grebogi–Yo...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Akhmet Marat
Fečkan Michal
Fen Mehmet Onur
Kashkynbayev Ardak
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Dinamikus rendszer, Káosz, Oszcillátor
Online Access:http://acta.bibl.u-szeged.hu/55745
LEADER 01303nas a2200229 i 4500
001 acta55745
005 20210916104240.0
008 181107s2018 hu o 0|| zxx d
022 |a 1417-3875 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Akhmet Marat 
245 1 0 |a Perturbed Li-Yorke homoclinic chaos  |h [elektronikus dokumentum] /  |c  Akhmet Marat 
260 |c 2018 
300 |a 1-18 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a It is rigorously proved that a Li–Yorke chaotic perturbation of a system with a homoclinic orbit creates chaos along each periodic trajectory. The structure of the chaos is investigated, and the existence of infinitely many almost periodic orbits out of the scrambled sets is revealed. Ott–Grebogi–Yorke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted. 
695 |a Dinamikus rendszer, Káosz, Oszcillátor 
700 0 1 |a Fečkan Michal  |e aut 
700 0 1 |a Fen Mehmet Onur  |e aut 
700 0 1 |a Kashkynbayev Ardak  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/55745/1/ejqtde_2018_075.pdf  |z Dokumentum-elérés