Multiple solutions of nonlinear elliptic functional differential equations

We shall consider weak solutions of boundary value problems for elliptic functional differential equations of the form n j=1 Dj [aj(x, u, Du; u)] + a0(x, u, Du; u) = F, x ∈ Ω with homogeneous boundary conditions, where Ω ⊂ Rn is a bounded domain and ; u denotes nonlocal dependence on u (e.g. integra...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Simon László
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations : special edition 3 No. 60
Kulcsszavak:Differenciálegyenlet - nemlineáris, Differenciálegyenlet - elliptikus
Online Access:http://acta.bibl.u-szeged.hu/55730
LEADER 01388nas a2200193 i 4500
001 acta55730
005 20211112102813.0
008 181107s2018 hu o 0|| zxx d
022 |a 1417-3875 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Simon László 
245 1 0 |a Multiple solutions of nonlinear elliptic functional differential equations  |h [elektronikus dokumentum] /  |c  Simon László 
260 |c 2018 
300 |a 1-9 
490 0 |a Electronic journal of qualitative theory of differential equations : special edition  |v 3 No. 60 
520 3 |a We shall consider weak solutions of boundary value problems for elliptic functional differential equations of the form n j=1 Dj [aj(x, u, Du; u)] + a0(x, u, Du; u) = F, x ∈ Ω with homogeneous boundary conditions, where Ω ⊂ Rn is a bounded domain and ; u denotes nonlocal dependence on u (e.g. integral operators applied to u). By using the theory of pseudomonotone operators, one can prove existence of solutions. However, in certain particular cases it is possible to find theorems on the number of solutions. These statements are based on arguments for fixed points of certain real functions and operators, respectively. 
695 |a Differenciálegyenlet - nemlineáris, Differenciálegyenlet - elliptikus 
856 4 0 |u http://acta.bibl.u-szeged.hu/55730/1/ejqtde_2018_060.pdf  |z Dokumentum-elérés