Multiple solutions of nonlinear elliptic functional differential equations
We shall consider weak solutions of boundary value problems for elliptic functional differential equations of the form n j=1 Dj [aj(x, u, Du; u)] + a0(x, u, Du; u) = F, x ∈ Ω with homogeneous boundary conditions, where Ω ⊂ Rn is a bounded domain and ; u denotes nonlocal dependence on u (e.g. integra...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations : special edition
3 No. 60 |
Kulcsszavak: | Differenciálegyenlet - nemlineáris, Differenciálegyenlet - elliptikus |
Online Access: | http://acta.bibl.u-szeged.hu/55730 |
LEADER | 01388nas a2200193 i 4500 | ||
---|---|---|---|
001 | acta55730 | ||
005 | 20211112102813.0 | ||
008 | 181107s2018 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Simon László | |
245 | 1 | 0 | |a Multiple solutions of nonlinear elliptic functional differential equations |h [elektronikus dokumentum] / |c Simon László |
260 | |c 2018 | ||
300 | |a 1-9 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations : special edition |v 3 No. 60 | |
520 | 3 | |a We shall consider weak solutions of boundary value problems for elliptic functional differential equations of the form n j=1 Dj [aj(x, u, Du; u)] + a0(x, u, Du; u) = F, x ∈ Ω with homogeneous boundary conditions, where Ω ⊂ Rn is a bounded domain and ; u denotes nonlocal dependence on u (e.g. integral operators applied to u). By using the theory of pseudomonotone operators, one can prove existence of solutions. However, in certain particular cases it is possible to find theorems on the number of solutions. These statements are based on arguments for fixed points of certain real functions and operators, respectively. | |
695 | |a Differenciálegyenlet - nemlineáris, Differenciálegyenlet - elliptikus | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/55730/1/ejqtde_2018_060.pdf |z Dokumentum-elérés |