On a reaction-diffusion-advection system fixed boundary or free boundary /
This paper is devoted to the asymptotic behaviors of the solution to a reaction–diffusion–advection system in a homogeneous environment with fixed boundary or free boundary. For the fixed boundary problem, the global asymptotic stability of nonconstant semi-trivial states is obtained. It is also sho...
Elmentve itt :
Szerzők: |
Xu Ying Zhu Dandan Ren Jingli |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2018
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Matematikai modell |
Online Access: | http://acta.bibl.u-szeged.hu/55696 |
Hasonló tételek
-
Permanence in N species nonautonomous competitive reaction-diffusion advection system of Kolmogorov type in heterogeneous environment
Szerző: Balbus Joanna
Megjelent: (2018) -
Hopf bifurcation in a reaction-diffusive-advection two-species competition model with one delay
Szerző: Meng Qiong, et al.
Megjelent: (2021) -
Controllability results for weakly blowing up reaction-diffusion system
Szerző: Tao Qiang, et al.
Megjelent: (2012) -
Global existence of solutions for reaction-diffusion systems with a full matrix of diffusion coefficients and nonhomogeneous boundary conditions
Szerző: Kouachi Said
Megjelent: (2002) -
Non-simultaneous blow-up for a reaction-diffusion system with absorption and coupled boundary flux
Szerző: Zhou Jun, et al.
Megjelent: (2010)