On a reaction-diffusion-advection system fixed boundary or free boundary /

This paper is devoted to the asymptotic behaviors of the solution to a reaction–diffusion–advection system in a homogeneous environment with fixed boundary or free boundary. For the fixed boundary problem, the global asymptotic stability of nonconstant semi-trivial states is obtained. It is also sho...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Xu Ying
Zhu Dandan
Ren Jingli
Dokumentumtípus: Folyóirat
Megjelent: 2018
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Matematikai modell
Online Access:http://acta.bibl.u-szeged.hu/55696
LEADER 01525nas a2200217 i 4500
001 acta55696
005 20200729122905.0
008 181106s2018 hu o 0|| zxx d
022 |a 1417-3875 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Xu Ying 
245 1 3 |a On a reaction-diffusion-advection system   |h [elektronikus dokumentum] :  |b fixed boundary or free boundary /  |c  Xu Ying 
260 |c 2018 
300 |a 1-31 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a This paper is devoted to the asymptotic behaviors of the solution to a reaction–diffusion–advection system in a homogeneous environment with fixed boundary or free boundary. For the fixed boundary problem, the global asymptotic stability of nonconstant semi-trivial states is obtained. It is also shown that there exists a stable nonconstant co-existence state under some appropriate conditions. Numerical simulations are given not only to illustrate the theoretical results, but also to exhibit the advection-induced difference between the left and right boundaries as time proceeds. For the free boundary problem, the spreading–vanishing dichotomy is proved, i.e., the solution either spreads or vanishes finally. Besides, the criteria for spreading and vanishing are further established. 
695 |a Matematikai modell 
700 0 1 |a Zhu Dandan  |e aut 
700 0 1 |a Ren Jingli  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/55696/1/ejqtde_2018_026.pdf  |z Dokumentum-elérés