Phase measurement using DIC microscopy

The development of fluorescent probes and proteins has helped make light microscopy more popular by allowing the visualization of specific subcellular components, location and dynamics of biomolecules. However, it is not always feasible to label the cells as it may be phototoxic or perturb their fun...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Koos Krisztián
Peksel Begüm
Kelemen Lóránd
Dokumentumtípus: Cikk
Megjelent: 2017
Sorozat:Acta cybernetica 23 No. 2
Kulcsszavak:Képfeldolgozás - digitális, Képszerkesztés, Mikroszkópia
Tárgyszavak:
doi:10.14232/actacyb.23.2.2017.12

Online Access:http://acta.bibl.u-szeged.hu/50092
LEADER 02588nab a2200253 i 4500
001 acta50092
005 20220620151615.0
008 180213s2017 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.23.2.2017.12  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Koos Krisztián 
245 1 0 |a Phase measurement using DIC microscopy  |h [elektronikus dokumentum] /  |c  Koos Krisztián 
260 |c 2017 
300 |a 629-643 
490 0 |a Acta cybernetica  |v 23 No. 2 
520 3 |a The development of fluorescent probes and proteins has helped make light microscopy more popular by allowing the visualization of specific subcellular components, location and dynamics of biomolecules. However, it is not always feasible to label the cells as it may be phototoxic or perturb their functionalities. Label-free microscopy techniques allow us to work with live cells without perturbation and to evaluate morphological differences, which in turn can provide useful information for high-throughput assays. In this study, we use one of the most popular label-free techniques called differential interference contrast (DIC) microscopy to estimate the phase of cells and other nearly transparent objects and instantly estimate their height. DIC images provide detailed information about the optical path length (OPL) differences in the sample and they are visually similar to a gradient image. Our previous DIC construction algorithm outputs an image where the values are proportional to the OPL (or implicitly the phase) of the sample. Although the reconstructed images are capable of describing cellular morphology and to a certain extent turn DIC into a quantitative technique, the actual OPL has to be computed from the input DIC image and the microscope calibration settings. Here we propose a computational method to measure the phase and approximate height of cells after microscope calibration, assuming a linear formation model. After a calibration step the phase of further samples can be determined when the refractive indices of the sample and the surrounding medium is known. The precision of the method is demonstrated on reconstructing the thickness of known objects and real cellular samples. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Képfeldolgozás - digitális, Képszerkesztés, Mikroszkópia 
700 0 1 |a Peksel Begüm  |e aut 
700 0 1 |a Kelemen Lóránd  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/50092/1/actacyb_23_2_2017_12.pdf  |z Dokumentum-elérés