Bounds on the stability number of a graph via the inverse theta function
In the paper we consider degree, spectral, and semidefinite bounds on the stability number of a graph. The bounds are obtained via reformulations and variants of the inverse theta function, a notion recently introduced by the author in a previous work.
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2016
|
Sorozat: | Acta cybernetica
22 No. 4 |
Kulcsszavak: | Programozás - függvény |
Tárgyszavak: | |
doi: | 10.14232/actacyb.22.4.2016.5 |
Online Access: | http://acta.bibl.u-szeged.hu/46421 |
LEADER | 01045nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta46421 | ||
005 | 20220620132958.0 | ||
008 | 170316s2016 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
024 | 7 | |a 10.14232/actacyb.22.4.2016.5 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Ujvári Miklós | |
245 | 1 | 0 | |a Bounds on the stability number of a graph via the inverse theta function |h [elektronikus dokumentum] / |c Ujvári Miklós |
260 | |c 2016 | ||
300 | |a 97-112 | ||
490 | 0 | |a Acta cybernetica |v 22 No. 4 | |
520 | 3 | |a In the paper we consider degree, spectral, and semidefinite bounds on the stability number of a graph. The bounds are obtained via reformulations and variants of the inverse theta function, a notion recently introduced by the author in a previous work. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Programozás - függvény | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/46421/1/actacyb_22_4_2016_5.pdf |z Dokumentum-elérés |