One-pass reductions
We study OI and IO one-pass reduction sequences with term rewrite systems. We present second order decidability and undecidability results on recognizable tree languages and one-pass reductions. For left-linear TRSs, the second order OI inclusion problem and the second order OI reachability problem...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2016
|
Sorozat: | Acta cybernetica
22 No. 3 |
Kulcsszavak: | Programozás |
Tárgyszavak: | |
doi: | 10.14232/actacyb.22.3.2016.6 |
Online Access: | http://acta.bibl.u-szeged.hu/40267 |
LEADER | 01189nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta40267 | ||
005 | 20220620134350.0 | ||
008 | 170316s2016 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
024 | 7 | |a 10.14232/actacyb.22.3.2016.6 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Vágvölgyi Sándor | |
245 | 1 | 0 | |a One-pass reductions |h [elektronikus dokumentum] / |c Vágvölgyi Sándor |
260 | |c 2016 | ||
300 | |a 633-655 | ||
490 | 0 | |a Acta cybernetica |v 22 No. 3 | |
520 | 3 | |a We study OI and IO one-pass reduction sequences with term rewrite systems. We present second order decidability and undecidability results on recognizable tree languages and one-pass reductions. For left-linear TRSs, the second order OI inclusion problem and the second order OI reachability problem are decidable, the second order OI joinability problem is undecidable. For right-linear TRSs, the second order common IO ancestor problem is undecidable. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Programozás | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/40267/1/actacyb_22_3_2016_6.pdf |z Dokumentum-elérés |