Mining high utility itemsets in massive transactional datasets

Mining High Utility Itemsets from a transaction database is to find itemsets that have utility beyond an user-specified threshold. Existing High Utility Itemsets mining algorithms suffer from many problems when being applied to massive transactional datasets. One major problem is the high memory dep...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Thi Vu Duc
Nguyen Huy Duc
Dokumentumtípus: Cikk
Megjelent: 2011
Sorozat:Acta cybernetica 20 No. 2
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
doi:10.14232/actacyb.20.2.2011.6

Online Access:http://acta.bibl.u-szeged.hu/12913
LEADER 01890nab a2200241 i 4500
001 acta12913
005 20220617141618.0
008 161015s2011 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.20.2.2011.6  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Thi Vu Duc 
245 1 0 |a Mining high utility itemsets in massive transactional datasets  |h [elektronikus dokumentum] /  |c  Thi Vu Duc 
260 |c 2011 
300 |a 341-346 
490 0 |a Acta cybernetica  |v 20 No. 2 
520 3 |a Mining High Utility Itemsets from a transaction database is to find itemsets that have utility beyond an user-specified threshold. Existing High Utility Itemsets mining algorithms suffer from many problems when being applied to massive transactional datasets. One major problem is the high memory dependency: the gigantic data structure built is assumed to fit in the computer main memory. This paper proposes a new disk-based High Utility Itemsets mining algorithm, which achieves its efficiency by applying three new ideas. First, transactional data is converted into a new database layout called Transactional Array that prevents multiple scanning of the database during the mining phase. Second, for each frequent item, a relatively small independent tree is built for summarizing co-occurrences. Finally, a simple and non-recursive mining process reduces the memory requirements as minimum candidacy generation and counting is needed. We have tested our algorithm on several very large transactional databases and the results show that our algorithm works efficiently. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
700 0 1 |a Nguyen Huy Duc  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/12913/1/actacyb_20_2_2011_6.pdf  |z Dokumentum-elérés