Limited codes associated with Petri nets

The purpose of this paper is to investigate the relationship between limited codes and Petri nets. The set M of all positive firing sequences which start from the positive initial marking μ of a Petri net and reach μ itself forms a pure monoid M whose base is a bifix code. Especially, the set of all...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Tanaka Genjiro
Dokumentumtípus: Cikk
Megjelent: 2009
Sorozat:Acta cybernetica 19 No. 1
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
doi:10.14232/actacyb.19.1.2009.14

Online Access:http://acta.bibl.u-szeged.hu/12862
LEADER 01515nab a2200229 i 4500
001 acta12862
005 20220617102338.0
008 161015s2009 hu o 0|| eng d
022 |a 0324-721X 
024 7 |a 10.14232/actacyb.19.1.2009.14  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Tanaka Genjiro 
245 1 0 |a Limited codes associated with Petri nets  |h [elektronikus dokumentum] /  |c  Tanaka Genjiro 
260 |c 2009 
300 |a 217-230 
490 0 |a Acta cybernetica  |v 19 No. 1 
520 3 |a The purpose of this paper is to investigate the relationship between limited codes and Petri nets. The set M of all positive firing sequences which start from the positive initial marking μ of a Petri net and reach μ itself forms a pure monoid M whose base is a bifix code. Especially, the set of all elements in M which pass through only positive markings forms a submonoid N of M. Also N has a remarkable property that N is pure. Our main interest is in the base D of N. The family of pure monoids contains the family of very pure monoids, and the base of a very pure monoid is a circular code. Therefore, we can expect that D may be a limited code. In this paper, we examine "small" Petri nets and discuss under what conditions D is limited. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
856 4 0 |u http://acta.bibl.u-szeged.hu/12862/1/actacyb_19_1_2009_14.pdf  |z Dokumentum-elérés