Investigating the behaviour of a discrete retrial system

Certain technological applications use queuing systems where the service time of entering entities cannot take any value, it can only be a multiple of a certain cycle-time. As examples of this, one can mention the landing of aeroplanes and the optical buffers of internet networks. Servicing an enter...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Kárász Péter
Testületi szerző: Symposium of Young Scientists on Intelligent Systems (2.) (2007) (Budapest)
Dokumentumtípus: Cikk
Megjelent: 2008
Sorozat:Acta cybernetica 18 No. 4
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12842
LEADER 01804nab a2200229 i 4500
001 acta12842
005 20220616151141.0
008 161015s2008 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Kárász Péter 
245 1 0 |a Investigating the behaviour of a discrete retrial system  |h [elektronikus dokumentum] /  |c  Kárász Péter 
260 |c 2008 
300 |a 681-693 
490 0 |a Acta cybernetica  |v 18 No. 4 
520 3 |a Certain technological applications use queuing systems where the service time of entering entities cannot take any value, it can only be a multiple of a certain cycle-time. As examples of this, one can mention the landing of aeroplanes and the optical buffers of internet networks. Servicing an entering customer can be started immediately, or, if the server is busy, or there are waiting customers, the new customer joins a queue, moving along a closed path which can be completed within a fixed cycle-time of T units. Applications in digital technology induce the investigation of discrete systems. We give the mathematical description of systems serving two types of customers, where inter-arrival times follow a geometric distribution, and service times are distributed uniformly. A Markov-chain is defined and the generating functions of transition probabilities are calculated. The condition of ergodicity is established and the equilibrium distribution is given. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
710 |a Symposium of Young Scientists on Intelligent Systems (2.) (2007) (Budapest) 
856 4 0 |u http://acta.bibl.u-szeged.hu/12842/1/Karasz_2008_ActaCybernetica.pdf  |z Dokumentum-elérés