Small conjunctive varieties of regular languages
The author's modification of Eilenberg theorem relates the so-called conjunctive varieties of regular languages with pseudovarieties of idempotent semirings. Recent results by Pastijn and his co-authors lead to the description of the lattice of all (pseudo)varieties of idempotent semirings with...
Elmentve itt :
Szerző: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Cikk |
Megjelent: |
2006
|
Sorozat: | Acta cybernetica
17 No. 4 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12798 |
LEADER | 01212nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta12798 | ||
005 | 20220616100942.0 | ||
008 | 161015s2006 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Polák Libor | |
245 | 1 | 0 | |a Small conjunctive varieties of regular languages |h [elektronikus dokumentum] / |c Polák Libor |
260 | |c 2006 | ||
300 | |a 825-841 | ||
490 | 0 | |a Acta cybernetica |v 17 No. 4 | |
520 | 3 | |a The author's modification of Eilenberg theorem relates the so-called conjunctive varieties of regular languages with pseudovarieties of idempotent semirings. Recent results by Pastijn and his co-authors lead to the description of the lattice of all (pseudo)varieties of idempotent semirings with idempotent multiplication. We describe here the corresponding 78 varieties of languages. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
710 | |a International Conference on Automata and Formal Languages (11.) (2005) (Dobogókő) | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12798/1/Polak_2006_ActaCybernetica.pdf |z Dokumentum-elérés |