HyperS tableaux - heuristic hyper tableaux

Several syntactic methods have been constructed to automate theorem proving in first-order logic. The positive (negative) hyper-resolution and the clause tableaux were combined in a single calculus called hyper tableaux in [1]. In this paper we propose a new calculus called hyperS tableaux which ove...

Full description

Saved in:
Bibliographic Details
Main Author: Kovásznai Gergely
Corporate Author: Conference for PhD Students in Computer Science (4.) (2004) (Szeged)
Format: Article
Published: 2005
Series:Acta cybernetica 17 No. 2
Kulcsszavak:Számítástechnika, Kibernetika
Subjects:
Online Access:http://acta.bibl.u-szeged.hu/12769
Description
Summary:Several syntactic methods have been constructed to automate theorem proving in first-order logic. The positive (negative) hyper-resolution and the clause tableaux were combined in a single calculus called hyper tableaux in [1]. In this paper we propose a new calculus called hyperS tableaux which overcomes substantial drawbacks of hyper tableaux. Contrast to hyper tableaux, hyperS tableaux are entirely automated and heuristic. We prove the soundness and the completeness of hyperS tableaux. HyperS tableaux are applied in the theorem prover Sofia, which additionally provides useful tools for clause set generation (based on justificational tableaux) and for tableau simplification (based on redundancy), and advantageous heuristics as well. An additional feature is the support of the so-called parametrized theorems, which makes the prover able to give compound answers.
Physical Description:325-338
ISSN:0324-721X