Topologies for the set of disjunctive ω-words

An infinite sequence (ω-word) is referred to as disjunctive provided it contains every finite word as infix (factor). As Jürgensen and Thierrin [JT83] observed the set of disjunctive ω-words, D, has a trivial syntactic monoid but is not accepted by a finite automaton. In this paper we derive some to...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Staiger Ludwig
Dokumentumtípus: Cikk
Megjelent: 2005
Sorozat:Acta cybernetica 17 No. 1
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12752
LEADER 01443nab a2200217 i 4500
001 acta12752
005 20220615125403.0
008 161015s2005 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Staiger Ludwig 
245 1 0 |a Topologies for the set of disjunctive ω-words  |h [elektronikus dokumentum] /  |c  Staiger Ludwig 
260 |c 2005 
300 |a 43-51 
490 0 |a Acta cybernetica  |v 17 No. 1 
520 3 |a An infinite sequence (ω-word) is referred to as disjunctive provided it contains every finite word as infix (factor). As Jürgensen and Thierrin [JT83] observed the set of disjunctive ω-words, D, has a trivial syntactic monoid but is not accepted by a finite automaton. In this paper we derive some topological properties of the set of disjunctive ω-words. We introduce two non-standard topologies on the set of all ω-words and show that D fulfills some special properties with respect to these topologies. In the first topology - the so-called topology of forbidden words - D is the smallest nonempty Gδ-set, and in the second one D is the set of accumulation points of the whole space as well as of itself. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
856 4 0 |u http://acta.bibl.u-szeged.hu/12752/1/Staiger_2005_ActaCybernetica.pdf  |z Dokumentum-elérés