Topologies for the set of disjunctive ω-words
An infinite sequence (ω-word) is referred to as disjunctive provided it contains every finite word as infix (factor). As Jürgensen and Thierrin [JT83] observed the set of disjunctive ω-words, D, has a trivial syntactic monoid but is not accepted by a finite automaton. In this paper we derive some to...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2005
|
Sorozat: | Acta cybernetica
17 No. 1 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12752 |
LEADER | 01443nab a2200217 i 4500 | ||
---|---|---|---|
001 | acta12752 | ||
005 | 20220615125403.0 | ||
008 | 161015s2005 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Staiger Ludwig | |
245 | 1 | 0 | |a Topologies for the set of disjunctive ω-words |h [elektronikus dokumentum] / |c Staiger Ludwig |
260 | |c 2005 | ||
300 | |a 43-51 | ||
490 | 0 | |a Acta cybernetica |v 17 No. 1 | |
520 | 3 | |a An infinite sequence (ω-word) is referred to as disjunctive provided it contains every finite word as infix (factor). As Jürgensen and Thierrin [JT83] observed the set of disjunctive ω-words, D, has a trivial syntactic monoid but is not accepted by a finite automaton. In this paper we derive some topological properties of the set of disjunctive ω-words. We introduce two non-standard topologies on the set of all ω-words and show that D fulfills some special properties with respect to these topologies. In the first topology - the so-called topology of forbidden words - D is the smallest nonempty Gδ-set, and in the second one D is the set of accumulation points of the whole space as well as of itself. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12752/1/Staiger_2005_ActaCybernetica.pdf |z Dokumentum-elérés |