Probabilistic diagnostics with P-graphs
This paper presents a novel approach for solving the probabilistic diagnosis problem in multiprocessor systems. The main idea of the algorithm is based on the reformulation of the diagnostic procedure as a P-graph model. The same, well-elaborated mathematical paradigm - originally used to model mat...
Elmentve itt :
Szerzők: | |
---|---|
Testületi szerző: | |
Dokumentumtípus: | Cikk |
Megjelent: |
2003
|
Sorozat: | Acta cybernetica
16 No. 2 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12723 |
Tartalmi kivonat: | This paper presents a novel approach for solving the probabilistic diagnosis problem in multiprocessor systems. The main idea of the algorithm is based on the reformulation of the diagnostic procedure as a P-graph model. The same, well-elaborated mathematical paradigm - originally used to model material flow - can be applied in our approach to model information flow. This idea is illustrated by deriving a maximum likelihood diagnostic decision procedure. The diagnostic accuracy of the solution is considered on the basis of simulation measurements, and a method of constructing a general framework for different aspects of a complex problem is demonstrated with the use of P-graph models. |
---|---|
Terjedelem/Fizikai jellemzők: | 279-291 |
ISSN: | 0324-721X |