On variable sized vector packing
One of the open problems in on-line packing is the gap between the lower bound Ω(l) and the upper bound O(d) for vector packing of d-dimensional items into d-dimensional bins. We address a more general packing problem with variable sized bins. In this problem, the set of allowed bins contains the tr...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Published: |
2003
|
Series: | Acta cybernetica
16 No. 1 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Subjects: | |
Online Access: | http://acta.bibl.u-szeged.hu/12708 |
Summary: | One of the open problems in on-line packing is the gap between the lower bound Ω(l) and the upper bound O(d) for vector packing of d-dimensional items into d-dimensional bins. We address a more general packing problem with variable sized bins. In this problem, the set of allowed bins contains the traditional "all-1" vector, but also a finite number of other d-dimensional vectors. The study of this problem can be seen as a first step towards solving the classical problem. It is not hard to see that a simple greedy algorithm achieves competitive ratio O(d) for every set of bins. We show that for all small ε > 0 there exists a set of bins for which the competitive ratio is 1 + ε. On the other hand we show that there exists a set of bins for which every deterministic or randomized algorithm has competitive ratio Ω(d). We also study one special case for d = 2. |
---|---|
Physical Description: | 47-56 |
ISSN: | 0324-721X |