The complexity of coloring graphs without long induced paths
We discuss the computational complexity of determining the chromatic number of graphs without long induced paths. We prove NP-completeness of deciding whether a P8-free graph is 5-colorable and of deciding whether a P12-free graph is 4-colorable. Moreover, we give a polynomial time algorithm for dec...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2001
|
Sorozat: | Acta cybernetica
15 No. 1 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12665 |
Tartalmi kivonat: | We discuss the computational complexity of determining the chromatic number of graphs without long induced paths. We prove NP-completeness of deciding whether a P8-free graph is 5-colorable and of deciding whether a P12-free graph is 4-colorable. Moreover, we give a polynomial time algorithm for deciding whether a P5-free graph is 3-colorable. |
---|---|
Terjedelem/Fizikai jellemzők: | 107-117 |
ISSN: | 0324-721X |