Complete finite automata network graphs with minimal number of edges
An automata network graph is said to be n-complete (under projection) if every automata network having underlying graph with n vertices can be simulated (under projection) on it. In this paper n-complete automata network graphs with minimal number of edges are completely characterized.
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
1999
|
Sorozat: | Acta cybernetica
14 No. 1 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12608 |
LEADER | 01084nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta12608 | ||
005 | 20220614083053.0 | ||
008 | 161015s1999 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Dömösi Pál | |
245 | 1 | 0 | |a Complete finite automata network graphs with minimal number of edges |h [elektronikus dokumentum] / |c Dömösi Pál |
260 | |c 1999 | ||
300 | |a 37-50 | ||
490 | 0 | |a Acta cybernetica |v 14 No. 1 | |
520 | 3 | |a An automata network graph is said to be n-complete (under projection) if every automata network having underlying graph with n vertices can be simulated (under projection) on it. In this paper n-complete automata network graphs with minimal number of edges are completely characterized. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
700 | 0 | 1 | |a Nehaniv Chrystopher L. |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12608/1/cybernetica_014_numb_001_037-050.pdf |z Dokumentum-elérés |