Decompositions of automata and transition semigroups

The purpose of this paper is to describe structural properties of automata whose transition semigroups have a zero, left zero, right zero or bi-zero, or are nilpotent extensions of rectangular bands, left zero bands or right zero bands, or are nilpotent. To describe the structure of these automata w...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Petković Tatjana
Ćirić Miroslav
Bogdanović Stojan
Dokumentumtípus: Cikk
Megjelent: 1998
Sorozat:Acta cybernetica 13 No. 4
Kulcsszavak:Számítástechnika, Kibernetika
Tárgyszavak:
Online Access:http://acta.bibl.u-szeged.hu/12598
Leíró adatok
Tartalmi kivonat:The purpose of this paper is to describe structural properties of automata whose transition semigroups have a zero, left zero, right zero or bi-zero, or are nilpotent extensions of rectangular bands, left zero bands or right zero bands, or are nilpotent. To describe the structure of these automata we use various well-known decomposition methods of automata theory - direct sum decompositions, subdirect and parallel decompositions, and extensions of automata. Automata that appear as the components in these decompositions belong to some well-known classes of automata, such as directable, definite, reverse definite, generalized definite and nilpotent automata. But, we also introduce some new classes of automata: generalized directable, trapped, onetrapped, locally directable, locally one-trapped, locally nilpotent and locally definite automata. We explain relationships between the classes of all these automata.
Terjedelem/Fizikai jellemzők:385-403
ISSN:0324-721X