Bounded space on-line variable-sized bin packing
In this paper we consider the fc-bounded space on-line bin packing problem. Some efficient approximation algorithms are described and analyzed. Selecting either the smallest or the largest available bin size to start a new bin as items arrive turns out to yield a worst-case performance bound of 2. B...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
1997
|
Sorozat: | Acta cybernetica
13 No. 1 |
Kulcsszavak: | Számítástechnika, Kibernetika |
Tárgyszavak: | |
Online Access: | http://acta.bibl.u-szeged.hu/12579 |
LEADER | 01279nab a2200229 i 4500 | ||
---|---|---|---|
001 | acta12579 | ||
005 | 20220613151130.0 | ||
008 | 161015s1997 hu o 0|| eng d | ||
022 | |a 0324-721X | ||
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Burkard Rainer E. | |
245 | 1 | 0 | |a Bounded space on-line variable-sized bin packing |h [elektronikus dokumentum] / |c Burkard Rainer E. |
260 | |c 1997 | ||
300 | |a 63-76 | ||
490 | 0 | |a Acta cybernetica |v 13 No. 1 | |
520 | 3 | |a In this paper we consider the fc-bounded space on-line bin packing problem. Some efficient approximation algorithms are described and analyzed. Selecting either the smallest or the largest available bin size to start a new bin as items arrive turns out to yield a worst-case performance bound of 2. By packing large items into appropriate bins, an efficient approximation algorithm is derived from fc-bounded space on-line bin packing algorithms and its worst-case performance bounds is 1.7 for k > 3. | |
650 | 4 | |a Természettudományok | |
650 | 4 | |a Számítás- és információtudomány | |
695 | |a Számítástechnika, Kibernetika | ||
700 | 0 | 1 | |a Zhang Guochuan |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/12579/1/cybernetica_013_numb_001_063-076.pdf |z Dokumentum-elérés |