A 1.6 lower-bound for the two-dimensional on-line rectangle bin-packing

Examining on-line algorithms for the two dimensional rectangle bin packing problem, Coppersmith asked in [2] whether one can give a better lower bound for this type of algorithms than the Liang's bound which is 1.5364... . In this paper we present a bound of 1.6.

Saved in:
Bibliographic Details
Main Author: Galambos Gábor
Format: Article
Published: 1991
Series:Acta cybernetica 10 No. 1-2
Kulcsszavak:Számítástechnika, Kibernetika
Subjects:
Online Access:http://acta.bibl.u-szeged.hu/12489
LEADER 01030nab a2200217 i 4500
001 acta12489
005 20220613081058.0
008 161015s1991 hu o 0|| eng d
022 |a 0324-721X 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Galambos Gábor 
245 1 2 |a A 1.6 lower-bound for the two-dimensional on-line rectangle bin-packing  |h [elektronikus dokumentum] /  |c  Galambos Gábor 
260 |c 1991 
300 |a 21-24 
490 0 |a Acta cybernetica  |v 10 No. 1-2 
520 3 |a Examining on-line algorithms for the two dimensional rectangle bin packing problem, Coppersmith asked in [2] whether one can give a better lower bound for this type of algorithms than the Liang's bound which is 1.5364... . In this paper we present a bound of 1.6. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Számítástechnika, Kibernetika 
856 4 0 |u http://acta.bibl.u-szeged.hu/12489/1/cybernetica_010_numb_001_002_021-024.pdf  |z Dokumentum-elérés